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Abstract—This work shows how OWL ontologies can be
represented into the automation standards AutomationML and
OPC UA. It is often asserted that an integration is possible, but
no detailed review could be found. The integration of OWL into
the standards is relevant, because it enables the collection and
usage of data through the whole life cycle in OWL. We show
that it is possible, but we identified some restriction regarding
the representation in OPC UA.

I. INTRODUCTION

Industrial automation is driven by trends such as Industrial
Internet [1] or the German counterpart Industrie 4.0 [2].
Their aim is to make production systems more flexible and
thus enable small batch sizes. Additionally, they have to be
more resource-efficient because of environmental aspects and
costs. To achieve these goals, additional functionalities support
the operators with services such as self-diagnosis capabilities
to enable predictive maintenance, optimization of production
parameters, or the autonomous planning of the logistic chain.
These functions can be enabled by smart services [2], which
are software components with functional interfaces which are
executed during the run-time.

Today, smart services1 are often specialized for a single
system and an adaption has to be performed manually, which
is not suitable for flexible production systems. The interop-
erability has to be increased to enable services that adapt
themselves to the current situation. It is a field of active
research, where different standards are combined to increase
the interoperability, e.g. in OLE for Process Control Unified
Architecture (OPC UA) [3] [4]. This is an improtant issue,
since there are more than 25 industrial ethernet protocols on
the market [3].

Additionally, the availability of knowledge is a crucial point
that is addressed in this paper. By enabling a standardized rep-
resentation of knowledge during the whole production plant’s
life cycle (see Fig. 2), multiple acquisitions of knowledge are
prohibited, which leads to a larger, and consistent knowledge
base. The term ’knowledge’ is used in the sense of AI,
where a formal language based on first-order logic is used
to describe knowledge about a specific domain, e.g. by using
ontologies. Based on the formal descriptions, it is possible to

1The term knowledge based service can be used synonymously, because
we propose that services require knowledge about the system to perform an
intelligent/smart behavior.

check the consistency and to infer new facts. An example for
such knowledge is: ’the total power consumption is the sum
of all single modules’. This enables an automatic adaption
e.g. if a new production module is integrated. Furthermore,
ontologies are still mentioned in current versions of Plattform
Industrie 4.0 [5] as technology for defining the vocabulary and
representing knowledge.

Since there are many kinds of knowledge, it has to be
defined what kind of knowledge is required for which smart
service. These different kinds of knowledge are represented
in the lower line of Fig. 1 (marked with italic font), whereas
the upper line contains some smart services. Two services in
the figure are exemplarily linked to the required knowledge.
The knowledge can be divided into type knowledge (white
boxes) and instance knowledge (grey boxes). Type knowledge
is independent of a specific production system and describes
concepts such as characteristics of causality, energy and sen-
sors, whereas the instance knowledge describes a specific
scenario, e.g. if sensor 12 detect a product, conveyor3 have
to stop.

Device	  
Descrip*on	   Topology	   Process	  

knowledge	   Physics	   Behavior	  
knowledge	  

Depend-‐
encies	  

Module	  
Configura.on	  

Root-‐Cause	  
Analysis	  

Predic.ve	  
Maintenance	  

Parameter	  
Op.miza.on	   ...	  Logis.c	  

planning	  

Fig. 1. Types of knowledge in the lower line, smart services in the upper
line and exemplary the relation between them

Most of the instance knowledge can be acquired during
the engineering phase. The Automation Mark-up Language
(AutomationML/AML) standard is used for the data exchange
between different engineering disciplines and can also be used
to collect the knowledge during the engineering phase. The
acquired knowledge can be provided via the OPC UA standard,
which is used in the operational phase. Since knowledge is
covered in the Web Ontology Language (OWL), a suitable
representation of ontologies in AML and in OPC UA has to
be identified. This raises up two research questions (RQ):

RQ 1: How can smart services be integrated in a future
automation architecture?
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Fig. 2. Usage of AutomationML and OPC UA during different phases of the production plant’s life-cycle

RQ 2: Can all types of required knowledge be integrated
into the automation standards OPC UA and AML
by using ontologies or are there any limitations?

The contribution of our paper is a concept that describes
how ontologies can be integrated into existing automation
standards to enable knowledge-based services such as self-
configuration, self-optimization, or self-diagnosis. Our paper
gives a review of the standards AML and OPC UA and makes
suggestions how these standards can be extended to fit the
needs of knowledge-based services.

II. EXISTING STANDARDS AND USE-CASES

The information flow of the production plant’s life-cycle can
be realized by just two standards which are introduced in this
section. The focus is on promising standards which are already
mentioned in the context of Industrie 4.0, so no detailed
review on alternatives is given here. Furthermore, the OWL is
introduced, which is well known for knowledge representation
for smart services. There are some works that use OWL, or
subsets of it, to provide helpful functions, such as answering
natural language questions [6], representation of maintenance
information [7], diagnosis [8], or configuration [9].

At the end of this section, three use-cases are introduced,
which can be solved by smart services. These use-cases
are chosen from the Plattform Industrie 4.0, so they act as
reference for Industrie 4.0 applications [10] . They are decribed
on an abstract level here, but they are used in a case-study in
Section IV.

A. Overview

Fig. 2 shows the life-cycle of a module for a production
plant. It can be divided into the engineering phase and the
operation phase. The rectangles above the life-cycle steps
indicate the knowledge that is generated during this step. Since
instance knowledge is specific to one module, it has to be
caught during the engineering phase, at the point where it is
generated. Since the data usage is offline, there are no time
constraints. AML can be used for the data exchange during
the engineering phase and is seen as one standard for Industrie
4.0 [11]. To cover the knowledge in each process step, there
must be the possibility to integrate ontologies into the AML
standard. Since knowledge has to be transformed back into an
ontology, the representation in AML must be unique.

During the operation phase, the knowledge has to be avail-
able at runtime, so an online access is required. OPC UA is a

promissing standard for it, because it provides an expressive
information model and it is also suggested as important
standard for Industrie 4.0 [11]. The knowledge has to be
transformed from a representation in AML to the information
model of OPC UA. A direct transformation is possible and
we propose a bijective transformation from the ontology to
each other format, because it will ease the integration of a
new standard or the replacement of an old one.

B. Web Ontology Language (OWL)

A popular modeling language for ontologies is the OWL,
which is also used in the following. OWL is a logic language
with different profiles which can be chosen depending on
the applications. Here, the Description Logic (DL) profile is
used, because DL is a decidable but still expressive profile
subset of the most expressive OWL full profile. Due to the
good coverage of tools and the possibility to create expressive
ontologies, it is also attractive for different domains. OWL on-
tologies can be represented through the Resource Description
Framework (RDF), which is a triplestore. RDF triple stores use
Extensible Markup Language (XML) to represent and store the
information. Therefore, many standard reasoners are available
and can be used without much effort, such as HermiT or Pellet.

To increase the expressiveness and thus the reasoning ca-
pability, OWL can be extended with the Semantic Web Rule
Language (SWRL). SWRL rules are formulas that are applied
to the instances, not to classes. SWRL does not only provide
simple rules, but also built-ins. They can be used e.g. to handle
strings, or mathematical calculations. [14]

C. OPC UA

The OPC UA is a platform-independent service-oriented
architecture (IEC 62541), which is established in industrial
environments to communicate and exchange data between
machines. This protocol is located in the software-based
upper layers (5 to 7) of the ISO/OSI Model and is therefore
independent of the physical hardware that is connecting the
participating devices. This flexibility is a major advantage for
automation industries and makes OPC UA predestined for
M2M communication, SCADA, HMI, and ERP applications.
It enables a flexible communication network between devices
of different vendors with authentication and encryption [15].
The communication of a OPC UA is based on a client-
server-architechture, where OPC UA clients frequently send
messages, or the server frequently sends messages to all



subscribed clients. Servers hold an information model that
describe their internal structure, which can be created by the
use of object-oriented modeling techniques. The information
model can be browsed and manipulated by clients, so it can
be used for control purposes. The server also offers services
in combination with this model. Vendors and interest groups
can define their own specifications for the information model,
which are known as OPC UA Companion Standards. Many
groups work on these OPC UA Companion Standards, such
as FDI (Field Device Integration), ADI (Analyzer Device
Integration), and PLCOpen to name a few.

D. AutomationML

AML is a standardized data exchange format (IEC 62714)
which can combine information, such as topology, geometry,
kinematics, behavior, and network, for many engineering dis-
ciplines. Therefore, several existing standards, named CAEX,
COLLADA and PLCopen XML, are used to represent the
information. The XML-based data format is used to present
this information.

CAEX is the top-level format for AML and contains roles,
classes, instances, interfaces, and relations between them.
The two other formats, COLLADA and PLCopen XML, are
integrated through a reference from the CAEX file using the
COLLADAInterface or PLCopenXMLInterface. Furthermore,
AML provides an ExternalDataConnector, which can be used
to refer to unspecified files such as documentations. The
standard is not closed, AML can be extended with a new spe-
cific interface for another XML based data exchange format.
There is an ongoing development, e.g. now it is possible to
integrate eCl@ss information in the CAEX-File [16]. Another
specification provides the possibility to transform an AML-
File into a OPC UA information model [17], but this would
only provide the information from the top-level format CAEX
in a structured manner. Because it has to be transformed within
two steps (from OWL to AML and from AML to OPC UA),
the maintenance and access of knowledge with smart services
would be more complicated and thus it seems not suitable to
use this specification.

E. Use-Cases

Use-Case 1 - Adaptable Factories: Future production lines
have to be adaptable to satisfy the demand of small batches
and individual products. New production modules should be
integrated with minimal or no manual effort to achieve that
goal, e.g. a printer to label products can be changed to enable
different materials. To keep the costs for such adaptions low,
the whole reconfiguration has to be done automatically. This
requires every module to contain a semantically unambiguous
self-description of its properties and capabilities [11].

Use-Case 2 - Human-Machine-Interaction: In steadily
changing environments, today’s static interaction methods are
not capable to fulfill the future needs. Besides, the need for
adaptable interfaces and the amount of information is con-
stantly increasing. Systems have to filter relevant information,
e.g. according to the position of the operator. For this, new

technologies such as smart watches, smart glasses, or advances
in natural language processing provide new possibilities for the
interaction. This aims to motivate the operator and enable him
to cover more tasks efficiently. [10]

Use-Case 3 - Value-Based Service: Value-Based Services
(VBS) are services to improve the usage of the machine with
the usage of the machine’s data. Typically, the vendor of a
machine offers VBS but it is not limited to the vendor. Services
which can be offered are manifold, and also the goals that
can be achieved with it. For example, a parametrization of
the machine for a given material to optimize the process, a
condition monitoring system to reduce the downtime, or a
rented machine is payed regarding the stress. [18]

All three use-cases have in common that their impact
increases by using smart services. Therefore, the knowledge
from all modules has to be online accessible for the services.

III. PROPOSED APPROACH

The main goal of this section is (i) to show how smart
services can fit into the future automation structure (RQ1) and
(ii) to propose a solution how knowledge, as OWL ontology,
can be represented in AML and OPC UA (RQ2).

A. Positioning of Smart Services

At the present time, there are not many Industrie 4.0
standards, but a great effort is being made to develop them. Be-
cause of the large heterogeneity in industries, it is expected that
there will be no single standard that fits to all domains [19].
However, some basic concepts are quasi fixed and introduced
here.

A device which fulfills requirements regarding Industrie
4.0 is called Industrie 4.0 component. Therefore, it is not
specified whether it is a single sensor, a whole factory, or
something in between. It mainly depends on the use-cases
that are addressed. By analyzing the application scenarios of
the Plattform Industrie 4.0 [20], all scenarios can be reached
with an asset administration shell (AAS) on module level, at
least partly. So, for this work it is suggested that the AAS is
implemented on module level. An AAS on sensor level would
enable some benefits for a few use cases, but as such sensors
would be much more expensive; this will play a minor role
for the short- and medium-term.

Every Industrie 4.0 component has an asset and an AAS.
The connection between the AAS and the asset is not specified,
it can be proprietary. In comparison, the AAS provides a
standardized communication interface which can communicate
with other components without previous configuration. How-
ever, it is not communication as known today, the Industrie 4.0
components have to be more flexible. They must be able to
have a common understanding of the exchanged information,
e.g. for automated production planning or to negotiate con-
tracts. To achieve this common understanding of information
and knowledge, semanticsis an issue [19]. Since semantics can
be represented by ontologies, it is a comprehensible need to
exchange ontologies with standards used for Industrie 4.0.



An often used standard is the Reference Architecture Model
Industrie 4.0 (RAMI4.0, DIN-SPEC 91345), which covers the
life cycle, the hierarchy levels and the layers of a production
system, see Fig. 3. The Type phase of the life cycle covers
the engineering phase (Development) and the implementation
of a prototype Maintenance/Usage. The Instance phase starts
with the Production of the instance and migrate to the Main-
tenance/Usage phase during ramp-up. The hierarchy levels
are presented according to the automation pyramid, with the
extension of a product on the lower side and the connected
world on the upper side.

Fig. 3. Positioning of the mainly used smart services in RAMI4.0 [21]

This model will be used to locate the smart services in
industry processes and derive possibilities for the integration
into the automation architecture. Smart services, mentioned in
this paper, are arranged in RAMI4.0 as marked red in Fig. 3.
They should support the operator, for example by supporting
the configuration during ramp-up or by diagnosing an anomaly,
so they are located at the Instance phase (Production and
Maintenance/Usage). On the hierarchical level, smart services
cover the whole range between the field devices and the
connected world. Mainly, the smart services are located in the
functional layer, but the business and information layer can
also be touched. The layers below are on a communication
level and do not need explicit knowledge to perform their
tasks; it is covered by the specific communication technology.

B. Automation Structure

As we can see in the RAMI4.0, the services are used during
the maintenance/usage phase. This requires a standard which
can provide the required knowledge online. Additionally, to
the online capability, the standard must be compatible to the
AAS. The AAS can be mapped bidirectionally to the OPC
UA Device Interface (IEC 62541-100). [11] This makes it
possible to transform IEC 62541-100 models to AAS models
and thus to increase the compatibility for an existing plant.
As an alternative, the Message Queuing Telemetry Transport
(MQTT/HTTP) is discussed as a possible technology to im-
plement the AAS. However, MQTT has a lot of limitations
and thus cannot provide as much functionalities as OPC UA.
Because it needs less resources, it could be interesting for
smaller devices [11], but not for our use-cases on module level.

To sum it up, Fig. 4 presents a proposal of how smart
services can be integrated into future automation systems.
OPC UA is used to communicate with the IT-Infrastructure.
The AAS is implemented as OPC UA information model.
Knowledge models of modules are located in the AAS and can
be accessed through the standardized Industrie 4.0 communi-
cation. Communication within the module is not restricted and
can be realized by traditional field buses. Smart services are
performed on the IT-Infrastructure, because the performance
is needed to handle complex algorithms for large production
systems. The processing of ontologies is expensive, due to the
exponentially increasing reasoning time [22]. It does not seem
appropriate to reason on controllers with limited resources.

In Fig. 4, a diagnosis service is randomly chosen, which fits
to use-case 3 (VBS). The service contains machine learning al-
gorithms to detect anomalies along with a reasoning engine to
perform the root-cause analysis. The reasoning engine requires
a plant ontology which is combined from module ontologies
and provide a standardized output for a user interface.
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Fig. 4. Possible integration of smart services into future automation systems

C. Required knowledge and ontology modeling

The aim of the plant ontology is to cover relevant knowledge
of the plant and to provide it to smart services. We identified
six categories in which the required knowledge could be
divided into, as shown in Figure 1. The following list gives
some details about the knowledge.

• Device Description: Types, Signal Names, Capabilities
• Topology: Order of Modules and Devices, Network
• Process Knowledge: Actions, Change of Products, KPIs
• Physics: Time, Energy, Mass, Chaining, Units
• Behavior: Production, Ramp-up, Maintenance, Idle
• Dependencies: Causalities, Relations
Obviously, there are many other schemas of how knowledge

can be classified. Another important classification is the dif-
ferentiation between type knowledge and instance knowledge.
Type knowledge, also known as T-Box (terminological com-
ponent) holds true for all automation systems, such as physics,
behavior, and partly process knowledge. Instance knowledge,
also known as A-Box (assertion component), holds true only



for a single system, such as topology, device description,
dependencies and partly process knowledge. If the system
changes, e.g. by integrating a new module, only the instance
knowledge has to be adapted.

Together the present paragraphs answer RQ 1 by showing
a concept of how smart services can be integrated. Instance
knowledge can be covered during the engineering phase in
AML. Afterwards, it is transformed to an OPC UA model
to provide an access for other services, see Fig. 2. Smart
services are located at the RAMI4.0, see Fig. 3. Because of
performance reasons, the smart services are performed on the
IT-Infrastructure, whereas the knowledge can be part of the
AAS, see Fig. 4.

D. Ontology integration to OPC UA

This section presents an approach for the representation of
OWL DL ontologies in an OPC UA information model to
answer RQ 2. Since no suitable companion specification could
be identified, the initial OPC UA specification is used.

The general approach of the OPC UA information model
and ontologies are similar. Both can be represented based
on nodes, or triples. But, there are three main differences
in the modeling: (i) OPC UA can represent hierarchies on
type and object level whereas OWL represents them only on
instance level (please note: OPC UA types are a synonym for
OWL classes or concepts and OPC UA objects are known
as instance or individual.); (ii) class description in OWL
cannot be represented in OPC UA information model directly;
(iii) not all characteristics and none of the object properties
descriptions of OWL can be represented in an OPC UA
information model natively. However, since OPC UA provides
freedom in modeling, it is possible to bridge differences and
to provide a transformation from OWL to OPC UA. The
transformation has to be bijective, so that it can be used to
create an ontology out of the information model and vice versa.

1) Class Hierarchy: OPC UA can represent the class hi-
erarchy of OWL on its type level. An OWL instance can be
modeled as OPC UA object. Since it is not possible to order
OWL instances hierarchically, this OPC UA function is not
used. Instances of both formalisms have a type property that
refers to the class or object type definition, but OWL instances
can have multiple class assignments, whereas OPC UA only
supports single class assignments. This is the first identified
modeling restriction. Table I shows the properties to describe
a class in OWL and maps them to relations of OPC UA. By
using these relations, the model can be transferred one-to-one,
if all OWL individuals have just one type definition, because
OPC UA supports only one relation of HasTypeDefinition for
each object, which is a suitable restriction. Additionally, it
is only suitable for non OWL full, because the OWL full
profile does not distinguish between classes and instances,
which cannot be represented in OPC UA.

Some general information about the ontology, such as ver-
sion information or the ontology’s Internationalized Resource
Identifier (IRI), are modeled at the top node of the ontology.
This enables the usage of short prefixes instead of long IRIs.

TABLE I
SOME REFERENCES CAN BE TRANSLATED DIRECTLY

OWL Property OPC UA Reference
subClassOf HasSubtype

Type HasTypeDefinition
DatatypeProperty HasProperty

2) Class Description: In OPC UA, OWL classes are de-
fined as Object Types, which can be complex constructs. Three
properties describe classes, namely equivalent to, subclass
of and disjoint with.2 The arguments of these properties
are classes, property restrictions using quantifiers and logical
expressions combined with classes and/or quantifier.

To provide a uniform model, the representation of class
restriction and quantifier restriction should be the same, as well
as the representation of combined expressions. This is achieved
by adding a node class variable to the object type, which is
a two dimensional array with four columns and n-rows. Four
columns are needed if a negated quantifier expression has to
be modeled. It is oriented at the OWL notation, which would
be: not(isRequiring some AirPressure). The model uses the
variable type SubClassOf. The first column contains a not, the
second column represent the relation, in this case isRequiring,
the third column contains the quantifier’s name some, and the
fourth column contains the class AirPressure, as represented
in Table II. For simple class representation, the same type of
array but only necessary columns are used; all others remain
empty.

TABLE II
ARRAY TO REPRESENT CLASS DESCRIPTIONS IN OPC UA

Negation Relation Quatifier Class
not isRequiering some AirPressure

isPerforming some Heating

Combined expressions are multiple statements connected
with logical and and or, such as Corn u (Sugar t Salt).
Therefore, a convention that all statements in one array are
connected via logical or is made. A logical and is modeled
by using the relation once again. This enables the expression
of all formulas, but they have to be in the conjunctive normal
form. It should be noted, there are two options to model the
logical and in OWL, a relation can be used more times or a
logical and can be used in a single statement. That difference
gets lost using the transformation, but the expressed statement
remains unchanged.

3) Property Characteristics: Two types of properties are
available in OWL, named data properties and object properties.
Data properties are used to bind data, e.g. a string, date or a
float to an individual, whereas object properties are relations
between individuals, e.g. hasInput, isPartOf, or hasUnit.

Data properties can be modeled as children of an individual,
using an OPC UA variable, similar to OWL. Therefore, data

2The variable type for disjoint classes were named disjointWithClass,
because the name disjointWith is used for the object property description.
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properties of the ontology have to be modeled as a Variable
Type in OPC UA, with the same data type as in OWL.

Object properties have some characteristics, namely func-
tional, inverse functional, symmetric, asymmetric, reflexive and
irreflexive, which have to be presented in the model. Addition-
ally, object properties have a description, namely equivalent
to, subProperty of, inverse of, domain, range, disjoint with
and superProperty of, which have to be represented. Typically,
such properties would be represented by references, which
would match OWL exactly. But it is not possible to express
the property description or characteristics of a Reference Type
in OPC UA, except the symmetry and the inverse of. Since
this is not sufficient, these OPC UA functions are not used
to get a homogeneous presentation of characteristics. Instead
properties are modeled as Variable Types. The characteristics
of the property are presented as a variable of the type boolean,
which is true if the property has the characteristic. If the
property is false or not modeled, the property does not have
that characteristic. Descriptions of properties are modeled
with the data type string, which contains the content of the
description, e.g. the range. The disadvantage is that it is not
linked in the model, it is just a string which has to match an
instance to be consistent. Nevertheless, the information model
is easy to understand for humans, because all descriptions and
restrictions of an instance are presented directly at the node.

An example is shown in Fig. 5, where the ontology of a
small module is represented as OPC UA information model.
Figure 5 shows instances, where module 1 is enlarged, so that
all relations are shown. Only property characteristics, which
are true, are modeled. The isPartOf relation is enlarged, so it
can be seen which characteristics and descriptions are defined.

4) SWRL: The variability of SWRL rules is limited, which
is a great advantage for the integration into OPC UA, because
OPC UA has no initial construct which is able to repre-
sent rules. The general syntax of SWRL is: antecedent →
consequent. Both, the antecedent and the consequent consist
of conjunctive atoms. Typically an atom consists of a class
assignment, a property assignment or built-ins. Class assign-
ments have the form C(x), which means that individual x
has the type C. Property assignments have the form P(x,y),

which means that individual x is connected to individual y
by the property P. Built-ins have the form <type>(x,y,...),
where <type> indicates the type of the built-in and (x,y,...)
the involved instances. A problem is that the list of arguments
is between one and infinity. For example swrlb:add sum the
arguments from the second to the last argument.

One way to represent SWRL in OPC UA is to take each
rule as a separate string. Even if there are no limitations in
the standard, it can lead to problems in practical applications,
because every device has an implementation-specific limit of
characters of a string. The identified limitations are between
254 and 32,767 characters. Since the worst case should be
taken into account, rules can be larger than 254 characters,
even if the variables get meaningful names instead of single
characters. Instead, a string array can be used, where every
atom has its own string. The distinction between antecedent
and the consequent could be made by a separate line, which
only includes the arrow =>. An example rule is presented in
Table III.

TABLE III
ONE DIMENSIONAL ARRAY TO REPRESENT AN SWRL RULE

provideOutputTo(?x, ?y)

hasOutput(?x, ?z)

hasInput(?y, ?z)

⇒
validGoodsF low(?x, ?y)

To integrate rules to OPC UA, an ObjectType is created,
which has at least one DataType SWRLRule, which is a one
dimensional string array. More SWRLRules can be added, to
represent the rules. Because the rules are an extension, they
are modeled as a separate object. Fig. 6 shows the information
model with OWLOntology and SWRL rules, the AAS is not
shown in that picture.

Fig. 6. Modelling of SWRL rules in OPC UA

E. Representation in AML

OPC UA is suitable to represent ontologies without many
limitations in its information model, but it is just used for on-
line purposes. AML should represent the instance knowledge
during the engineering phase. Therefore, two possibilities to
represent ontologies in AML are presented. First, by mod-
eling the ontology in a CAEX-File and second, by setting
a reference with a data connector. Both are explained and
rated shortly. A CAEX-File consists of a instance hierarchy
and three libraries, viz SystemUnitClassLib, RoleClassLib and
InterfaceClassLib [23]. OWL classes can be defined in the
SystemUnitClassLib. Every class needs an InternalElement to



represent class descriptions through Internal Link. Every Inter-
nal Link has a class, which is defined in the InterfaceClassLib,
similar to object properties in OWL. The Internal Link can
have attributes and constraints, which allows a modeling of
the characteristics. OWL individuals are represented in the
InstanceHierarchy and have to be linked to a SystemUnitClass.
Therefore, a representation of ontologies in CAEX is possible.

However, AML provides a much simpler way for the
integration by linking a file with a ExternalDataConnector.
This enables it to link OWL files without any transformation. It
is suitable, because AML is used during the engineering phase
and thus does not share the need of accessing with limited
resources. In addition to that, the AML standard explicitly
allows a further integration of XML standard formats, as for
COLLADA and PLCopen XML [23]. The integration by link-
ing the OWL-File is the smartest solution since no additional
effort is required. Additionally, it can be standardized in the
AML standard, if the usage of ontologies increases.

IV. CASE-STUDY

The versatile production system (VPS) is a demonstrator
in the SmartFactoryOWL, which was created as an adapt-
able production system. Due to its separate modules with
similar electrical and mechanical interfaces, modules can be
exchanged as needed for the actual production process. The
VPS uses bulk good (corn) as input and produces popcorn. In
the actual plant configuration it has four modules: delivery
of goods (corn), storage, dosing and popcorn production.
Additionally, there is a quality control module available, which
sorts out bad corn. Each module is equipped with a separate
PLC, so that a module just needs a trigger signal and input
material; it acts independently of the modules nearby. Every
PLC has its own OPC UA Server with an information model
providing an interface to other modules and user control. The
use-cases above realized with this demonstrator.

Case-Study 1 - Adaptable Factory: The configuration of
production systems has to be performed quickly and reliably.
For example, if the quality of the delivered corn is bad,
the operator has to integrate the quality control module and
reconfigure the modules according to the lower throughput of
the new module. With traditional automation technology, the
operator himself has to configure the parameters of all modules
separately. If he is supported by smart services, the service will
check whether the chosen configuration is valid and adapt the
parameter automatically.

To enable this scenario, the modules have to provide knowl-
edge about themselves. Smart services access the knowledge
and process it with rules. The rule

provideOutputTo(x, y) ∧ hasOutput(x, z) ∧
hasInput(y, z) ⇒ validGoodsF low(x, y)

checks whether the input and output material of modules is
valid or not. Likewise, such rules have to be defined for the
mechanical and electrical interfaces of the modules, as well
as for characteristics such as throughput. If all rules can be

applied successfully, the operator gets a message that confirms
the configuration and the operation can be started.

Case-Study 2 - Human-Machine-Interaction: Since the
VPS is versatile, it is hard to develop a user interface that
is suitable for all possible plant configurations. New human-
machine-interaction technologies, such as a natural language
interface [24], can be used to interact with the VPS. This can
be realized with a smart service that processes the language
and uses a knowledge base to determine answers: i.e. every
natural language interfaces should have an underlying knowl-
edge base to determine meaningful answers [25]. The service
maps the data of the machine to a conceptual representation,
which is needed for communication with humans. Therefore,
the knowledge is used to derive the meaning of a user request,
without an explicit mapping between the user request and
the proposed signal name (a unique name which represents
a device on the field bus).

The advantage for operators is that they can communicate
naturally with the machine, independently of the actual config-
uration. Moreover, it is not important how familiar the operator
is with the machine: The system can answer questions in
colloquial language as well as specified questions of a service
engineer. Typically, users request sensor values, such as the
power consumption or key performance indicators, which are
a combination of different values, such as overall equipment
efficiency. Also, they can ask for the health state of the
machine or information regarding the configuration.

Case-Study 3 - Value-Based Service: A downtime of a
production system is always costly and has to be avoided.
Therefore, VBS, such as predictive maintenance, are getting
more and more important for the reduction of unplanned
downtimes and the handling unplanned situations.

The diagnosis has to identify an anomaly and to de-
rive the root cause of it, which can be performed by a
smart service. The anomaly detection is done by com-
mon data-driven anomaly detection algorithms such as clus-
tering [26], deep neural networks [27][28], or learned au-
tomata [29]. Knowledge-based services can be used to obtain
a diagnosis [8]. If, for example, the scale of a module is a
possible anomaly, it can be caused by the blow pipe which
puts corn into the scale. Most users would identify the scale as
root-cause, but this assumption is wrong. Since it is difficult to
check the scale for the operator, it is time consuming to iden-
tify the real root-cause. The smart service uses the knowledge
which is provided by the modules to derive possible root-
causes and provide them to the operator; in our example three
root-causes are possible. The operator can decide the order of
checking them, since two of them are easy to check and thus
save valuable time.

All case-studies require knowledge to perform their tasks in
a high quality. To check whether or not the concept is suitable,
the use cases were implemented in the SmartFactoryOWL
respectively a simulation tool, to ease the reconfiguration.
Ontologies from different modules could be accessed, merged
and used from the smart service.



V. CONCLUSION

In this paper, the positioning of smart services in future
automation systems and the compatibility of ontologies with
existing standards used for Industrie 4.0 has been analyzed.
Following answers could be made regarding the RQ:
RQ 1: RAMI 4.0 was introduced and smart services were
located into it. OPC UA was chosen as technology, among
others because it is feasible to represent the AAS by using
the IEC 62541-100 standard. A concrete example is used to
show how different elements are combined into the automation
technology. Because large knowledge bases are expected,
smart services are executed on an external IT infrastructure.
RQ 2: The commen OWL ontologies were analyzed and
they can be integrated into the OPC UA standard. The only
identified limitation is that OWL full ontologies cannot be rep-
resented in the OPC UA information model and the individuals
can have just one type in the OPC UA representation, in this
approach. For many practical applications, these limitations
will be not a problem, because they do not use these modeling
constructs. SWRL rules cannot be represented in OPC UA
via a similar construct, but by representing them in a string
array they are accessible. The modeling in AML is possible.
Therefore, no limitations could be identified.

Both standards are able to integrate a representation of
ontologies. AML provides the possibility to refer to ontologies
with a universal data connector, which can be specified and
integrated into the standard. The integration of ontologies into
OPC UA can be represented in a companion specification.
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